## DE

## fluorecare

## SARS-CoV-2 und Influenza A/B und RSV Antigen-Kombi-Testkit

## PRODUKTNAME

Pebrauchlicher Name: SARS-CoV-2 und Influenza A/B und RSV Antigen Kombi-Testkit


## WAS TESTET DAS KIT?

Der fluorecare® Kombi-Test für SARS-CoV-2 \& Influenza A/B-Virus- \& RSV-Antigene kann für den gleichzeitigen qualitativen Nachweis und die Differenzierung neuer Coronaviren
(SARS-CoV-2-Antigene), Influenza A-Virus-Antigene, Influenza B-Virus-Antigene und/oder RARS-CoV-2-Antigene), Influenza A-Virus-Antigene, Influenza B-Virus-Antigene und/ode Dieses Kit kann als Hilfsmittel zur Diagnose einer Coronavirus-Infektionskrankheit (COVID 19) verwendet werden, die durch SARS-CoV-2 innerhalb von 7 Tagen nach Ausbruch de Krankheit bei symptomatischen Patienten verursacht wird; es kann auch als Hilfsmittel zur
Diagnose einer durch Influenza A/B-Virus oder RSV verursachten Krankheit verwendet werden.

## Anforderung an das Alter des Benutzer

erson im Alter vol $2=14$ dis on Erwachsenen oder Eltern (18-60 Jahre alt) zur Prob verwendet werden.
Personen im Alter von 14-17 Jahren können dieses Kit zur Probenentnahme und zum robentesten unter der Aufsicht von Erwachsenen oder Eltern (18-60 Jahre alt) verwenden Die Aufsichtspersonen sollten sicherstellen, dass die Benutzer die Anforderungen der
Bedienungsanleitung genau verstanden haben und beobachten, ob der Benutzer den Tes richtig ausführt.
Bei Personen über 75 Jahren wird empfohlen, dass Familienmitglieder oder
Erziehungsberechtigte (18-60 Jahre) dieses Kit zur Probenentnahme und zum Testen von Proben zu verwenden.

## Hintergrund

ie neuen Coronaviren gehören zur $\beta$-Gattung. COVID-19 ist eine akute Infektionskrankhei der Atemwege. Menschen sind generell dafür empfänglich. Derzeit sind die mit dem neuen Coronavirus infizierten Personen die Hauptansteckungsquelle. Auch asymptomatische epidemiologischen Untersuchungen beträgt die Inkubationszeit 1 bis 14 Tage, meist 3 bis Tage. Die häufigsten Symptome sind Fieber, Müdigkeit und Reizhusten. In einigen wenige fllzuena $\mathrm{A} / \mathrm{B}$ ist eine ansteckende Aase, Hassegmerzen, Myalgie und Durchfall auf. veruarsacht wird. Influenza-Viren können leichte bis schwere Erkrankungen hervorrufen Schwere Verläufe von Influenza können zu einem Krankenhausaufenthalt oder zum Tod führen. Bestimmte Risikogruppen, wie ältere Menschen, kleine Kinder und Menschen mit bestimmten Grunderkrankungen, habe ein höheres Risiko für schwere Influenzakomplikationen. Es gib zwei Haupttypen von Influenzaviren: A \& B. Sowohl Influenzaviren des Typs A als auch de yps B verbreiten sich regelmäßig bei Menschen und sind jedes Jahr für die saisonale und nachdem eine Person Anzeichen und Symptome einer Erkrankung zeigt
Das Respiratory-Syncytial-Virus (RSV) gehört zur Gattung der Pneumoviren aus der Famil der Paramyxoviridae. Es kann durch Husten und Tröpfcheninfektion übertragen werden un verursacht hauptsächlich Infektionen der unteren Atemwege wie Bronchiolitis und Lungenentzündung bei Säuglingen unter 6 Monaten sowie Infektionen der oberen Atemwege
wie Schnupfen und Erkältung bei älteren Kindern und Erwachsenden und Bronchitis oder wie Schnupfen und Erkältung bei älteren

## PRINZIP

Das SARS-CoV-2- und Influenza A/B- und RSV-Antigen wird durch die kolloidale Gold-信 wurde, wird das SARS-CoV-2-Antigen (oder Influenza A/B und RSV) in der Zu destenden Probe mit dem SARS-CoV-2-Antigen (oder Influenza A/B und RSV) Antikörper, -Antigen (oder Influenza A/B und RSV) Antikörper-kolloidalen Goldkomplex zu bilden. Wegen der Chromatographie diffundiert der SARS-CoV-2-Antigen (oder Influenza A/B und
RSV) -Antikörper-kolloidales Gold-Komplex entlang der Nitrocellulose-Membran Innerhalb RSV) -Antikorper-koloidales Gold-Komplex entlang der Nitrocellulose-Membran. Innerhalb
des Bereichs der Detektionslinie bindet der SARS-CoV-2-Antigen (oder Influenza A/B und RSV) -Antikörper-Komplex an den Antikörper im Bereich der Detektionslinie und zeigt ein ila-rote Bande. Mit kolloidalem Gold markierte SARS-CoV-2-Antigene (oder Influenza A/B und RSV) diffundieren in den Bereich der Qualitätskontrolli-inie (C) und werden von Schaf-
Anti-Maus-IgG eingefangen und zeigen rote Banden. Wenn die Reaktion beendet ist, können Sie die Ergebnisse durch visuelle eeobachtung interpretieren. ENTHÄLT:


WAS BRAUCHEN SIE NOCH
Timer.
Das Testkit ist für 18 Monate gültig.
estkassettenbeutel geofffnet ist, sollte der Test innerhalb von 1 de durchgeführt werden.
WIE KANN MAN DEN TEST DURCHFÜHREN?
Waschen Sie die Tischplatte, auf der der Test durchgeführt werden wird.

Testkit und die Proben vor dem Gebrauch auf Raumtemperatur ( $20-25^{\circ} \mathrm{C}$ ). Der Test sollte bei $20-25^{\circ} \mathrm{C}$ durchgeführt werden. Wenn Sie das Kit aus dem Kühlschrank nehmen, lassen Sie es vor dem Testen 5 Minuten bei Raumtemperatur $\left(20-25^{\circ} \mathrm{C}\right)$ liegen.

1. Drehen Sie den Deckel des Probenbehandlungsrörchens ab und
2. Drehen Sie den Deckel des Probenbehandlungsröhrchens ab und entfernen Sie den inneren
blauen Stöpsel. Mit dem blauen Stöpsel soll verhindert werden dass das Produkt während des lauen Stopsel. Mitt dem blauen Stöpsel soll verhindert werden, dass das Produkt während des
Transports auslauft. Der blaue Stöpsel muss vor dem Gebrauch entfernt werden! Stecken Sie des Probenbehandlungstöhrchen in die Öffnung des Kits oder ve andere Gegenstände, um des Probenbehandlungsröhrchen zu befestigen.

## $5+\frac{5}{4}$

. Reißen Sie den Folienbeutel auf, nehmen Sie die Teskassete heraus und $\begin{gathered}\text { erlenden Sie die } \\ \text { den }\end{gathered}$ Testkassette so schnell wie möglich innerhalb von 1 Stunde.
3. Probennahme

Die Methode der Nasenabstrichtupfer-Nahm:

1) Nehmen Sie den sterilen Nasenabstrichtupfer vorsichtig aus der

Verpackung. (Vermeiden Sie es, das wattierte Ende zu berühren) Führen Sie
den Nasenabstrichtupfer in das linke Nasenloch bis zu einer Tiefe von 2,5
cm (1 Zoll) vom Rand des Nasenlochs ein.





Negativ
rgebnis für RS

## 

## 

 TUN?

1. Ein positives Ergebnis für COVID-19-Antigen bedeutet, dass Sie möglicherweise an Möglicherweise werden Sie gebeten, sich zu Hause zu isolieren, um andere nicht anzustecken. Wenn Sie dazu aufgefordert werden, tragen Sie bitte einen Mundschutz und waschen Sie Ihre Hände regelmäßig mit Seife und Wasser. Ein positives Ergebnis für Influenza A/B oder RSV bedeutet, dass Sie möglicherweise an Influenza oder RSV leiden. Kontaktieren Sie bitte Ihren Arzt für weitere medizinische Beratung. Wenn Sie dazu aufgefordert werden, tragen Sie bitte einen Mundschutz, um andere nicht anzustecken.
2. Ein negatives Ergebnis für COVID-19 Influenz
3. Ein negatives Ergebnis für COVID-19, Influenza A/B oder RSV-Antigen bedeutet, dass das
Virus von COVID-19. Influnza Virus von Covid-19, Influenza A/B oder RSV nicht in Ihrer Probe gefunden wurde. Ein
negatives Testergebnis ist keine Garantie dafür, dass Sie nicht an COVID-19 leiden oder gelitten haben, und es bestatitigt auch nicht, ob Sie zurzeit infektiös sind oder nicht. Wenn Sie Erkaltungssyptome, Luft-/Atemnot (Dyspnoe) oder hohes Fieber haben, sollten Sie annehmen, dass Sie Covid-19, Influenza A/B oder RSV haben, weil der Heimtest keine vollständige Sicherheit geben kann.
Sie können Ihren Arzt kontaktieren, um herauszufinden, ob ein anderer Test notwendig ist. Versuchen Sie zwischenzeitlich, Ihre Wohnung nicht zu verlassen und möglichst wenig
Kontakt mit anderen zu haben, einschließlich der Menschen, mit denen Sie zusammenleben. Kontakt mit anderen zu haben, einschließlich der Menschen, mit denen Sie zusammenleben.
Verwenden Sie bitte Einwegtaschentücher und werfen Sie sie direkt in den Mülleimer. Niesen und husten Sie bitte in Ihre Ellenbeuge. Waschen Sie bitte regelmäßig die Hände und tragen Sie einen Mundschutz.
4. Ohne Konsultation Ihres Arztes sollten Sie keine medizinisch relevanten Entscheidungen
treffen. Maßnahmen, die Sie nach Ablesen Ihrer Testergebnisse ergreifen, treffen. Maßnahmen, die Sie nach Ablesen Ihrer Testergebnisse ergreifen, müssen den aktuellen lokalen Vorschriften entsprechen.
5. Bei einer Mischinfektion mit dem Covir
6. Bei einer Mischinfektion mit dem COVID-19-Virus, dem Influenza-Virus und dem RSV-
Virus kann die Krankheit Virus kann die Krankheit schwerwiegender sein und es kommt zu entsprechenden
Komplikationen. Sie sollten auf persönlichen Schutz achten, um andere nicht anzustecken, und Sich so schnell wie möglich zur Diagnose ins Krankenhaus
EINSCHRÄNKUNG DER METHODOLOGIE
7. Drücken Sie den Abstrichtupfer 10 Mal im Probenbehandlungsröhrchen aus. Dann warten Sie 1 Minute lang auf bis die Probe reagiert hat. Schrauben Sie die Kappe an der Oberseite des
Deckels ab. Wenn die Kappe auf der Oberseite des Deckels nicht abgeschrubt und der blue Deckels ab. Wenn die Kappe auf der Oberseite des Deckels nicht abgeschraubt und der blaue Flüssigkeit zu tropfen!
Jede Probenvertiefung der Testkassette benötigt 2 Tropfen (etwa $60 \mu \mathrm{~L}$ ) der behandelten Probenlösung. Die Vertiefungen, die mit einem „S" unter den Zeichen COVID-19, Influenza A/B oder RSV gekennzeichnet sind, sind die Probenvertiefungen. Sie können 3 Probenvertiefungen gleichzeitig verwenden, um 3 verschiedene Arten von Antigenen zu erkennen, oder Sie können nur eine Probenvertiefung verwenden, um eine Art von Antigen zu erkennen. In jede Probenvertiefung können nur 2 Tropfen der behandelten Probenlösung
getropft werden! Zu viele oder zu wenige behandelte Probenlösungen können zu ungültigen Testergebnissen führen! Nachdem die Probe hinzugefügt wurde, sollten Sie den Deckel, die obere Kappe des Deckels
und den blauen Stöpsel wieder in das Prpbenbehandlungsröhrchen stecken und als Schadstoffe und den bla
behandeln.

8. Dieses Kit ist ein qualitativer Test und wird nur für die In-vitro-Hilfsdiagnose verwendet.
9. Wenn das Antigen in einer Probe unter der Detektionsgrenze des Tests liger unsachgemäße Probenentnahme vorliegt, kann es zu negativen Testergebnissen kommen. Die negativen Ergebnisse bedeuten nicht, dass eine Infektion mit anderen Viren als dem COVID 19-Virus, dem Influenza-Virus oder dem RSV-Virus ausgeschlossen ist
10. Unsachgemaiße Probenahme, Transport, Behandlung und ein geringer Virengehalt in den 4. Dieses Reagenz ist eine qualitative Prüfung. Wie bei jedem diagnostischen Verfahren kann die bestätigte Diagnose einer Virusinfektion nur von einem Arzt gestellt werden, nachdem alle klinischen und Laborbefunde ausgewertet worden sind.
11. Wenn Sie die Testergebnisse früher als 15 Minut.
12. Wenn Sie die Testergebnisse früher als 15 Minuten oder später als 20 Minuten ablesen,
können die Ergebnisse falsch sein können die Ergebnisse falsch sein.
13. Ein negatives Testergebnis für
14. Ein negatives Testergebnis für COVID-19, Influenza A/B oder RSV-Antigen schließt eine
COVID-19-, Influenza A/Bgeltenden Vorschriften zur Kontrolle der Ausbreitung (z. B. Kontaktbeschränkungen und

## FRAGE UND ANTWORT

F1. Wie funktioniert das SARS-CoV-2 und Influenza A/B und RSV Antigen Kombi-Testkit? Das SARS-CoV-2 und Influenza A/B und RSV Antigen Kombi-Testkit ist ein Antigentest zum Nachweis von neuartigen Coronaviren (SARS-CoV-2 Antigen), Influenza A-Virus, Influenza
B-Virus Antigen und/oder RSV Antigen in Nasenabstrichproben der Menschen in vitro. F2. Was ist der Unterschied zwischen einem COVID-19 Antigen-, Molekular-
Antikërpertest?
Es gibt verschiedene Arten von Tests zur Diagnose von COVID-19. Molekulare Tests (auch Es gibt verschiedene Arten von Tests zur Diagnose von COUD-Tests bekannt) können genetisches Material des Virus detektieren.
als
Antigen-Tests sind sehr spezifisch für das Virus, aber nicht so sensitiv wie molekulare Tests. Eine andere Art von Test ist ein Antikörper-Test. Mit einem COVID-19-Antikörper-Test können Sie Antikörper nachweise, die von Ihrem Immunsystem als Reaktion auf eine frühere F3. Wird dieser Test schaden?
F3. Wird dieser Test schaden?
Nein, der sterile Einwegabstrichtupfer ist nicht scharf und sollte nicht wehtun. Manchmal kann man sich der Abstrichtupfer ein bisschen unbequem oder oder kitzelig anfühlen.
F4. Warum muss ich beide Nasenlöcher abtupfen?
Wenn Sie beide Nasenlöcher abtupfen, haben Sie die größte Möglichkeit, genügend Proben zu sammeln, um ein genaues Ergebnis zu bekommen.
In einigen Fällen wurden Viren nur in einem Nase
In einigen Fallen wurden Vren nur in einem Nasenloch gefunden, also ist es wichtig, Proben Ergebnis zu bekommen. Ohne Konsultation Ihre
Ohne K.
F5. Was.
F5. Was bedeutet es, wenn ich ein positives Testergebnis habe
Ein positives Ergebnis fïr COVID-19-Antigen
Ein positives Ergebnis für COVID-19-Antigen bedeutet, dass Sie möglicherweise an COVID19 leiden. Kontaktieren Sie bitte Ihren Arzt für weitere medizinische Beratung.
Möglicherweise werden Sie gebeten, sich zu Hause zu isolieren, um andere nicht Möglicherweise werden Sie gebeten, sich zu Hause zu isolieren, um andere nicht anzustecken.
Wenn Sie dazu aufgefordert werden, tragen Sie bitte einen Mundschutz und waschen Sie Ihre Hände regelmäßig mit Seife und Wasser. Ein positives Ergebnis für Influenza A/B oder RSV bedeutet, dass Sie möglicherweise an Influenza oder RSV leiden. Kontaktieren Sie bitte Ihren Arzt für weitere medizinische Beratung. Wenn Sie dazu aufgefordert werden, tragen Sie bitte einen Mundschutz, um andere nicht anzustecken.
Maßnahmen, die Sie nach Ablesen Ihrer Testergebnisse ergreifen, müssen den aktuellen lokalen Vorschriften entsprechen.
Bei einer Mischinfektion mit dem
Bei einer Mischinfektion mit dem COVID-19-Virus, dem Influenza-Virus und dem RSV-Virus kann die Krankheit schwerwiegender sein und es kommt zu entsprechenden Komplikationen.
Sie sollten auf persönlichen Schutz achten, um andere nicht anzustecken, und sich so schnell wie möglich zur Diagnose ins Krankenhaus begeben. F6. Was bedeutet es, wenn ich ein negatives Testergebnis für COVDD-19 Antigen habe.
Ein negatives Ergebnis bedeutet, dass das Virus, das COVID-19 verursacht, nicht in Ihrer Probe gefunden wurde.
Ein negatives Testergebnis ist keine Garantie dafuir, dass Sie nicht an COVID-19 leiden oder gelitten haben, und es bestätigt auch nicht, ob Sie zurzeit infektiös sind oder nicht.
Haben Sie zusätzlich zu dem negativen Heimtest noch Erkältungssymptome? Weil der
Heimtest keine vollständige Sicherheit gibt, sollten Sie davon ausgehen, dass Sie COVID-19 Heimtest keine volistange Ihren Arzt kontaktieren, um herauszufinden, ob ein anderer Test notwendig ist. Versuchen Sie zwischenzeitlich, Ihre Wohnung nicht zu verlassen und möglichst wenig Kontakt mit anderen zu haben, einschließlich der Menschen, mit denen Sie zusammenleben. Verwenden Sie bitte Einwegtaschentücher und werfen Sie sie direkt in den Mülleimer. Niesen und husten Sie bitte in Ihre Ellenbeuge. Waschen Sie bitte regelmäßig die Hände und tragen
Sie einen Mundschutz. Haben sich Ihre Symptome verschlimmert (Atemnot, hohes Fieber Sie einen Mundschutz. Haben sich Ihre Symptome verschlimmert (Atemnot, hohes Fieber,
usw.)? Kontaktieren Sie sofort Ihren Arzt/ Gesundheitsieferanten. usw.)? Kontaktieren Sie sofort Ihren Arzt/ Gesundheitslieferanten.
F7. Wie genau ist das SARS-CoV-2 und Influenza A/B und RSV Antigen Kombi-Testkit?
Bei klinischen Feldauswertungen durch professionelle Gesundheitsfachkrätte hat sich gezeigt dass der Test $96,11 \%$ (642/668) der 2019-nCoV-Proben korrekt identifiziert (bekannt als die Genauigkeit des Tests). Außerder hat der Test bei klinischen Felduntersuchungen 100\% Genauigkeit des Tests). Außerdem hat der Test bei klinischen Felduntersuchungen $100 \%$
$(100 / 100$ ) 2019-nCoV-negative Proben korrekt identifiziert, wenn Anwender den Test selbst durchgefuihrt haben.
F8. Gibt es eine Chance, dass ich mit diesem Test ein "falsches" negatives Ergebnis
bekomme?
Es ist möglich, dass Sie ein falsches negatives Ergebnis beim Test bekommen. Das bedeutet, dass Sie COVID-19, Influenza oder RSV leiden könnten, obwohl das Testergebnis negativ ist.
Wenn Ihr Ergebnis negativ ist und Sie immer noch Symptome wie z. B. Fieber, Husten Wenn hr Ergebnis negativ ist und Sie immer noch Symptome wie z. B. Fieber, Husten
und/oder Atemnot haben, die mit COVID-19 zusammenhängen, sollten Sie Ihren Gesundheitslieferanten um Hilfe bitten.
F9. Ist es möglich, dass ich ein falsches positives Ergebnis bekomme?
Es gibt eine sehr kleine Chance, dass Sie bei diesem Test ein falsches positives Ergebnis
bekommen (falsch positiv). Wenn Sie ein positives Ergebnis bekommen, sollten Sie sich selbst bekommen (falsch positiv). Wenn Sie ein positives Ergebnis bekommen, sollten Sie sich selbst
isolieren und F10. Ich habe den Test durchgeführt, aber es erscheint kein farb
Kontrollinie (C). Was soltte ich tun?
Wenn es nach 15 .
Wenn es nach 15 Minuten keinen farbigen Streifen an der Kontrolllinie (C) gibt, funktioniert
der Test nicht. Sie sollten den Test mit einem neuen Testkit wiederholen und die Anweisungen
genau befolgen. Kontaktieren Sie gleichzeitig sofort unsere E-Mail: bio@microprofit.com.
F11. Können Medikamente oder Krankheiten die Ergebnisse beeinflussen? Wir haben Untersuchungen schon zu den Wirkungen der Medikamente durchgeführt, lesen Sie dazu Kapitel 5 des INDEX DER MERKMALE. Die Ergebnisse zeigten, dass die Medikamente Abschnitt 5 keinen Einfluss auf die Testergebnisse hatten. W. F12. Was sind die möglichen Risiken dieses Tests?
Mögliche Risiken:
Unbehagen während der Probenentnahme Falsche Testergebnisse (siehe Abschnitte „Interpretation der Ergebnisse und Einschränkungen").

Bitte achten Sie darauf, ob die Nasenhöhle durch den Nasenabstrichtupfer verletzt wurde. enn dies der Fall ist, kontaktieren Sie Ihren Arzt nach dem Test. Das Blut hat keinen Einfluss

## INDEX DER MERKMALE

## beträgt $100 \%$ betragen.

2. Negative Referenzprodukt-Konformitätsrate: Die negative Referenzprodukt3. Detektionsgrenze (LoD):

Detektionsgrenze (LoD)
Die LoD von SARS-CV-2
Die LoD der Influenza A is

| Virenstämme | LoD |
| :---: | :---: |
| 2009H1N1 | $1,96 \times 10^{4} \mathrm{TCID}_{5 /} / \mathrm{mL}$ |
| Saisonales HIN1 | $2 \times 10^{4} \mathrm{TCID}_{50} / \mathrm{mL}$ |
| Typ A H3N2 | $4 \times 10^{4} \mathrm{TCID}{ }_{50} / \mathrm{mL}$ |
| Die LoD der Influenza B ist: |  |
| Virenstämme | LoD |
| B/Victoria | $5 \times 10^{3} \mathrm{TCID}_{50} / \mathrm{mL}$ |
| B/Yamagata | $2,625 \times 10^{3} \mathrm{TCID}_{50} / \mathrm{mL}$ |

RSV Typ A ist 1
(1)Die unten aufgelisteten Viren/Bakterien haben bestätigt keine Kreuzreaktivität mit dem SARS-CoV-2-Antigen Test:
Humanes Coronavirus (OC43) $3,8 \times 10^{5} \mathrm{PFU} / \mathrm{ml}$; Humanes Coronavirus (229E) $2,3 \times 10^{4}$ Humanes Coronavirus (OC43) $3,8 \times 10^{5}$ PFU/ml; Humanes Coronavirus (229E) $2,3 \times 10^{5}$
PFU/ml; Humanes Coronavirus MERS (Florida/USA-2 Saudi-Arabien_2014) $1,05 \times 10^{5}$ Protein) 45 ga/ml; Adenovirus Typ 01 (Spezies C) $834 \times 10^{4} \mathrm{PFU} / \mathrm{ml}$; Adenovirus Typ 02 Spezies C) $1,05 \times 10^{5} \mathrm{PFU} / \mathrm{ml}$; Adenovirus Typ 11 (Spezies B) $1,02 \times 10^{\prime} \mathrm{PFU} / \mathrm{ml}$; Enteroviru yp 68 (2014 Isolate) $1,05 \times 10^{5} \mathrm{PFU} / \mathrm{ml}$; Humanes Metapneumovirus( 16 Typ A1) $3,80 \times 10^{0}$ PFU/ml; Humanes Metapneumovirus (3 Typ B1 Stamm Peru 2_2002) $1,41 \times 10^{4} \mathrm{PFU} / \mathrm{ml}$ Parainfluenza Virus (Typ 1) $1,26 \times 10^{5} \mathrm{PFU} / \mathrm{ml}$; Parainfluenza Virus (Typ 2) $1,26 \times 10^{5} \mathrm{PFU} / \mathrm{ml}$; Parainfluenza Virus (Typ 3) $3,39 \times 10^{6} \mathrm{PFU} / \mathrm{ml}$; Parainfluenza Virus (Typ 4B) $3,80 \times 10$ PFU $/ \mathrm{ml}$; Respiratorisches Synzytialvirus Typ A (Isolat: 2006) $7,35 \times 10^{5} \mathrm{PFU} / \mathrm{ml}$; Rhinovirus
$($ Typ 1 A$) 1,05 \times 10^{6} \mathrm{PFU} / \mathrm{ml}$; Influenza Typ A H $3 \mathrm{~N} 2(\mathrm{HK} / 8 / 68) 1,51 \times 10^{4} \mathrm{PFU} / \mathrm{ml}$. Influenz Typ A, H1N1 (Brisbane $/ 59 / 07$ ) $4.57 \times 10^{5} \mathrm{PFU} / \mathrm{ml}$; Influenza Typ A, H1N1pdm
 Influenza Typ B (Alabama/2/177) $3,16 \times 10^{5} \mathrm{PFU} / \mathrm{ml}$; Staphylococus aureus (Protein A) DSM 21705 (E. Domann) $3,62 \times 10^{9}$ CFU/ml; Staphylococus aureus (Protein A) DSM 21979 (E Domann, Univ.) $7,64 \times 10^{9} \mathrm{CFU} / \mathrm{ml}$; Staphylococus aureus (Protein A) DSM 46320 (E Domann) $4,58 \times 10^{9} \mathrm{CFU} / \mathrm{ml}$; Staphylococcus epidermidis DSM 1798 (PCI 1200) $4,90 \times 10$ CFU/ml; Staphylococcus epidermidis DSM 20044 (Fussel) $5,10 \times 10^{9} \mathrm{CFU} / \mathrm{ml}$; Bordetella pertussis DSM 4923 (Walker) 2,71x10 CFU/ml; Bordetella pertussis DSM 4926 (Sato und
Arai) $2,02 \times 10^{\circ} \mathrm{CFU} / \mathrm{ml}$; Bordetella pertussis DSM $55718,07 \times 10^{\circ} \mathrm{CFU} / \mathrm{ml}$; Legionalle pneumophila DSM 7513 (Philadelphia-1) $4,50 \times 10^{\circ} \mathrm{CFU} / \mathrm{ml}$; Legionalle pneumophila DSM 514 (Los Angeles-1) $1,17 \times 10^{10} \mathrm{CFU} / \mathrm{ml}$; Streptococcus pyogenes DSM 20565 (SF130 Ti) $1,37 \times 10^{8} \mathrm{CFU} / \mathrm{ml}$; Streptococcus pyogenes DSM 2071 (S. Koshimura, Sv) $9,30 \times 10^{7} \mathrm{CFU} / \mathrm{ml}$ Haemophilus influenzae DSM 24049 (TD-4) $7,77 \times 10^{8} \mathrm{CFU} / \mathrm{ml}$; Haemophilus influenza DSM 4690 (Maryland) $1,41 \times 10^{7} \mathrm{CFU} / \mathrm{ml}$; Haemophilus influenzae DSM 23393 (Pittman 576 ) , $23 \times 10^{8} \mathrm{CFU} / \mathrm{ml}$; Mycobacterium tuberculosis DSM 43990 (BCGT, tice) $4,69 \times 10^{8} \mathrm{CFU} / \mathrm{ml}$; Streptococcus pneumoniae (Protein G) DSM 20566 (SV1) $4,05 \times 10^{\circ} \mathrm{CFU} / \mathrm{ml}$; Streptococcus
pneumoniae (Protein G) DSM 11967 (Jorgensen262) $3,80 \times 10^{7} \mathrm{CFU} / \mathrm{ml}$; Streptococcus peumoniae (Protein G) DSM 25971 (Gyeonggi) $2,70 \times 10^{8} \mathrm{CFU} / \mathrm{ml}$; Mycoplasm neumoniae DSM 23978 (Eaton Agent, FH) $>10^{5}$ Zelle $/ \mathrm{ml}$; Mycoplasma pneumoniae DSM 23979 (M129-B7) $>10^{5}$ Zelle $/ \mathrm{ml}$; Candida albicans DSM 1386 ( NLH 3147 ) $6,53 \times 10^{8} \mathrm{CFU} / \mathrm{ml}$; Candida albicans DSM $1665(132) 2,39 \times 10^{8} \mathrm{CFU} / \mathrm{ml}$; Candida albicans DSM 5817 ( 806 M )
$2,55 \times 10^{8} \mathrm{CFU} / \mathrm{ml}$; Pseudomonas aeruginosa DSM 1117 (Boston 41501 ) $1,31 \times 10^{9} \mathrm{CFU} / \mathrm{ml}$; $2,55 \times 10^{8} \mathrm{CFU} / \mathrm{ml}$; Pseudomonas aeruginosa DSM 1117 (Boston 41501 ) $1,31 \times 10^{9} \mathrm{CFU} / \mathrm{ml}$,
Pseudomonas aeruginosa DSM 3227 (Schutze) $3,93 \times 10^{9} \mathrm{CFU} / \mathrm{ml}$; Streptococcus salivarius Pseudomonas aeruginosa DSM 3227 (Schutze) $3,93 \times 10^{9} \mathrm{CFU} / \mathrm{ml}$; Streptococcus salivarius
DSM $20560(275) 5,44 \times 10^{8} \mathrm{CFU} / \mathrm{ml}$; Streptococcus salivarius DSM $20067(21367) 5,09 \times 10^{8}$ CFU/ml. Influenza A:
Humanes Coronavirus (OC43) $3,8 \times 10^{5}$ PFU/ml; Humanes Coronavirus (229E) $2,3 \times 10$
PFU/ml; Humanes Coronavirus MERS (Florida/USA-2 Saudi Arabia 2014)
$1,05 \times 10^{2}$ $\mathrm{PFU} / \mathrm{ml}$; Humanes Coronavirus (NL63) $2,8 \times 10^{4} \mathrm{PFU} / \mathrm{ml}$; Humanes Coronavirus (HKU1) (N protein) $45 \mu \mathrm{~g} / \mathrm{ml}$; Adenovirus Typ 01 (Spezies C) $8,34 \times 10^{4} \mathrm{PFU} / \mathrm{ml}$; Adenovirus Typ 02 Typ 68 (2014 Isolat) $1,05 \times 10^{5} \mathrm{PFU} / \mathrm{ml}$; Humanes Metapneumovirus( 16 Typ A1) $3,80 \times 10^{5}$ $\mathrm{PFU} / \mathrm{ml}$; Humanes Metapneumovirus (3 Typ B1 Stamm Peru 2 2002) $1,41 \times 10^{4} \mathrm{PFU} / \mathrm{m}$;
Parainfluenza Virus (Typ 1) $1,26 \times 10^{5}$ PFU/ml; Parainfluenza Virus (Typ 2) $1,26 \times 10^{5} \mathrm{PFU} / \mathrm{ml}$; Parainfluenza Virus (Typ 3) $3,39 \times 10^{6} \mathrm{PFU} / \mathrm{ml}$; Parainfluenza Virus (Typ 4B) $3,80 \times 10^{5} \mathrm{PFU} / \mathrm{ml}$; Respiratorisches Synzytialvirus Typ A (Isolat: 2006) $7,35 \times 10^{5}$ PFU/ml; Rhinovirus (Typ 1A)
$1,05 \times 10^{6}$ PFU/ml; Influenza Typ B (Texas/ $6 / 11$ ) $2,26 \times 10^{5}$ PFU/ml; Influenza Typ B Alabama/2/17) $3,16 \times 10^{5} \mathrm{PFU} / \mathrm{ml}$; Staphylococus aureus (Protein A) DSM 21705 (E. Doman ${ }^{, 62 \times 10^{9} \mathrm{CFU} / \mathrm{ml} \text {; Staphylococus aureus (Protein A) DSM } 21979 \text { (E. Domann, Univ.) }}$ $7,64 \times 10^{9} \mathrm{CFU} / \mathrm{ml}$; Staphylococus aureus (Protein A) DSM 46320 (E. Domann) $4,58 \times 10^{9}$
CFU $/ \mathrm{ml}$; Staphylococcus epidermidis DSM 1798 (PCI 1200) $4,90 \times 10^{9} \mathrm{CFU} / \mathrm{ml}$; DSM 4923 (Walker) $2,71 \times 10^{9} \mathrm{CFU} / \mathrm{ml}$; Bordetella pertussis DSM 4926 (Sato und Arai) $2,02 \times 10^{9} \mathrm{CFU} / \mathrm{ml}$; Bordetella pertussis DSM $55718,07 \times 10^{9} \mathrm{CFU} / \mathrm{ml}$; Legionalle pneumophil DSM 7513 (Philadelphia-1) $4,50 \times 10^{9} \mathrm{CFU} / \mathrm{ml}$; Legionalle pneumophila DSM 7514 (Lo Angeles-1) $1,17 \times 10^{10} \mathrm{CFU} / \mathrm{ml}$; Streptococcus pyogenes DSM 20565 (SF130, T1) $1,37 \times 10^{2}$ Haemophilus influenzae DSM 24049 (TD-4) $7,77 \times 10^{8} \mathrm{CFU} / \mathrm{ml}$; Hem,001 Haemophilus influenzae DSM 24049 (TD-4) $7,77 \times 10^{8} \mathrm{CFU} / \mathrm{ml}$; Haemophilus influenza $1,23 \times 10^{8} \mathrm{CFU} / \mathrm{ml}$; Mycobacterium tuberculosis DSM 43990 (BCGT, tice) $4,69 \times 10^{8} \mathrm{CFU} / \mathrm{m}$ Streptococcus pneumoniae (Protein G) DSM 20566 (SV1) $4,05 \times 10^{8} \mathrm{CFU} / \mathrm{ml}$; Streptococcu pneumoniae (Protein G) DSM 11967 (Jorgensen262) $3,80 \times 10^{7} \mathrm{CFU} / \mathrm{ml}$; Streptococcu pneumoniae (Protein G) DSM 25971 (Gyeonggi) $2,70 \times 10^{8} \mathrm{CFU} / \mathrm{ml}$; Mycoplasma pneumoniae DSM 23978 (Eaton Agent, FH) $>10^{5}$ Zelle/m;, Mycoplasma pneumoniae DSM 23979 (M129 B7) $>10^{\circ}$ Zelle $/ \mathrm{ml}$; Candida abicans DSM 1386 (NIH 3147 ) $6,53 \times 10^{\circ} \mathrm{CFU} / \mathrm{ml}$; Candid albicans DSM $1665(132) 2,39 \times 10^{8} \mathrm{CFU} / \mathrm{ml}$; Candida albicans DSM 5817 (806M) $2,55 \times 10^{8}$
$\mathrm{CFU} / \mathrm{ml}$; Pseudomonas aeruginosa DSM 1117 (Boston 41501 ) $1,31 \times 10^{9} \mathrm{CFU} / \mathrm{ml}$; Pseudomonas aeruginosa DSM 3227 (Schutze) $3,93 \times 10^{\circ} \mathrm{CFU} / \mathrm{ml}$; Streptococcus salivariu DSM 20560 (275) $5,44 \times 10^{8} \mathrm{CFU} / \mathrm{ml}$; Streptococcus salivarius DSM 20067 (21367) $5,09 \times 10^{8}$ CFU/ml; SARS-CoV-2(5,6 $610^{5}$ TCID $\left.{ }_{\text {so }} / \mathrm{ml}\right)$, Neue Coronavirus-Variante-Stamm $\quad$ B.1.1.7 (alpha) (
$\left(1,0 \times 10^{6}\right.$
TCID TCID $50 / \mathrm{ml}$ ), Neue Coronavirus-Variante-Stamm B. 1.617 .2 (delta) $\left(1,9 \times 10^{6} \mathrm{TCID} \mathrm{T}_{50} / \mathrm{ml}\right)$, Neue Coronavirus-Variante-Stamm B. 1.1.529 (omicron) $\quad\left(3,1 \times 10^{6} \mathrm{TCID}\right.$ so $\left./ \mathrm{ml}\right)$

解 Humanes Coronavirus (OC43)
PFU/ml; Humanes Coronavirus MERS (Florida/USA-2_Saudi Arabia 2014) $1,05 \times 10^{-1} 2,3 \times 10^{-}$ $\mathrm{PFU} / \mathrm{ml}$; Humanes Coronavirus (NL63) $2,8 \times 10^{4} \mathrm{PFU} / \mathrm{ml}$; Humanes Coronavirus (HKU1) (N protein), $45 \mu \mathrm{mg} / \mathrm{ml}$; Adenovirus Typ 01 (Spezies C) $8,3 \times 10^{4} \mathrm{PFU} / \mathrm{mll}$; Adenovirus Typ 02
(Sepzies C) $1,05 \times 10^{5}$ PFU/ml; Adenovirus Typ 11 (Spezies B) $1,02 \times 10^{7}$ PFU/ml Enteroviru Spezies C) $1,05 \times 10^{5} \mathrm{PFU} / \mathrm{ml}$; Adenovirus Typ 11 (Spezies B) $1,02 \times 10^{7} \mathrm{PFU} / \mathrm{ml}$; Enterovirus Typ 68 (2014 Isolat) $1,05 \times 10^{5}$ PFU/ml; Humanes Metapneumovirus( 16 Typ A1) $3,80 \times 10^{5}$
PFU $/ \mathrm{ml}$; Humanes Metapneumovirus ( 3 Typ B1 Stamm Peru 2002 ) $1,41 \times 10^{4} \mathrm{PFU} / \mathrm{ml}$; PFU $/ \mathrm{ml}$; Humanes Metapneumovirus ( 3 Typ B1 Stamm Peru 2 2002) $1,41 \times 10^{4} \mathrm{PFU} / \mathrm{m} /$
Parainfluenza Virus (Typ 1) $1,26 \times 10^{5} \mathrm{PFU} / \mathrm{ml}$; Parainfluenza Virus (Typ 2) $1,26 \times 10^{5} \mathrm{PFU} / \mathrm{ml}$ Parainfluenza Virus (Typ 3) $3,39 \times 10^{6} \mathrm{PFU} / \mathrm{ml}$; Parainfluenza Virus (Typ 4B) $3,80 \times 10^{5} \mathrm{PFU} / \mathrm{ml}$, Respiratorisches Synzytialvirus Typ A (Isolat: 2006) $7,35 \times 10^{5} \mathrm{PFU} / \mathrm{ml}$; Rhinovirus (Typ 1A) $1,05 \times 10^{6} \mathrm{PFU} / \mathrm{ml}$; Influenza Typ A, H3N2 (HK/8/68) $1,51 \times 10^{4} \mathrm{PFU} / \mathrm{ml}$; Influenza Typ A H1N1 (Brisbane/59/07) $4,57 \times 10^{5}$ PFU/ml ; Influenza Typ A, H1N1pdm (Canada/6294/09)
$1,26 \times 10^{5}$ PFU/ml; Staphylococus aureus (Protein A) DSM 21705 (E. Domann) $3,62 \times 10^{9}$ CFU/ml; Staphylococus aureus (Protein A) DSM 21979 (E. Domann, Univ.) $7,64 \times 10^{\circ} \mathrm{CFU} / \mathrm{m}$;
 Saphylococcus epidermidis DSM 1798 (PCI 1200) $4,90 \times 10^{9} \mathrm{CFU} \mathrm{ml}$; Staphylococce
epidermidis DSM 20044 (Fussel) $5,10 \times 10^{\circ} \mathrm{CFU} / \mathrm{ml}$; Bordetella pertussis DSM 4923 (Walker) $2,71 \times 10^{9} \mathrm{CFU} / \mathrm{ml}$; Bordetella pertussis DSM 4926 (Sato und Arai) $2,02 \times 10^{9} \mathrm{CFU} / \mathrm{m}$ Bordetella pertussis DSM $55718,07 \times 10^{9} \mathrm{CFU} / \mathrm{ml}$; Legionalle pneumophila DSM 7513 (Philadelphia-1) $4,50 \times 10^{9} \mathrm{CFU} / \mathrm{ml}$; Legionalle pneumophila DSM 7514 (Los Angeles-1)
$1,17 \times 10^{10} \mathrm{CFU} / \mathrm{ml}$; Streptococcus pyogenes DSM 20565 (SF130, T1) $1,37 \times 10^{8} \mathrm{CFU} / \mathrm{ml}$; Streptococcus pyogenes DSM 2071 (S. Koshimura, Sv) $9,30 \times 10^{7}$ CFU/ml; Haemophilus
influenzae DSM 24049 (TD-4) $7,77 \times 10^{8}$ CFU/ml; Haemophilus iffluenzae DSM 4690
(Maryland) $1,41 \times 10^{7} \mathrm{CFU} / \mathrm{ml}$; Haemophilus influenzae DSM 23393 (Pittman 576) $1,23 \times 10$ Strettococcus pneumoniae (Protein G) DSM 20566 (SV1) $4.05 \times 10^{8} \mathrm{CFU} / \mathrm{ml}$; Streptococcu pneumoniae (Protein G) DSM 11967 (Jorgensen262) $3,80 \times 10^{7} \mathrm{CFU} / \mathrm{ml}$; Streptococcus pneumoniae (Protein G) DSM 25971 (Gyeonggi) $2,70 \times 10^{8} \mathrm{CFU} / \mathrm{ml}$; Mycoplasma pneumoniac
DSM 23978 (Eaton Agent, FH$)>10^{5}$ Zelle $/ \mathrm{ml}$; Mycoplasma pneumoniae DSM 23979 (M129 B7) $>10^{5}$ Zelle/ml. Candida albicans DSM 1386 (NIH 3147) $653 \times 10^{8} \mathrm{CFU} / \mathrm{ml}$. Candid albicans DSM 1665 (132) $2,39 \times 10^{8} \mathrm{CFU} / \mathrm{ml}$; Candida albicans DSM 5817 ( 806 M ) $2,55 \times 10$ $\mathrm{CFU} / \mathrm{ml}$; Pseudomonas aeruginosa DSM 1117 (Boston 41501) $1,31 \times 10^{9} \mathrm{CFU} / \mathrm{ml}$;
Pseudomonas aeruginosa DSM 3227 (Schutze) $3,93 \times 10^{9} \mathrm{CFU} / \mathrm{ml}$ S Streptococcus salivarius Pseudomonas aeruginosa DSM 3227 (Schutze) $3,93 \times 10^{9} \mathrm{CFU} / \mathrm{ml}$; Streptococcus salivarius
DSM 20560 (275) $5,44 \times 10^{8} \mathrm{CFU} / \mathrm{ml}$; Streptococcus salivarius DSM $20067(21367) 5,09 \times 10^{8}$ $\mathrm{CFU} / \mathrm{ml}$; SARS-CoV-2(5,6 $\times 10^{5}$ TCID $50 / \mathrm{ml}$ ), Neue Coronavirus-Variante-Stamm B.1.1.7 (alpha) $\left(1,0 \times 10^{6}\right.$ TCIDso/ml), Neue Coronavirus-Variante-Stamm B.1.351 (Beta) $\left(1,3 \times 10^{6}\right.$
 Coronavirus-Variante-Stamm B.1.1.529 (omicron) $\left(3,1 \times 10^{6} \mathrm{TCID}_{50} / \mathrm{ml}\right)$.
(4)Die unten aufgelisteten Viren/Bakterien haben bestätigt keine Kreuzreaktivität mit dem RSV-Antigen Test
Humanes Coronavirus (OC43) $3,8 \times 10^{5} \mathrm{PFU} / \mathrm{ml}$; Humanes Coronavirus (229E) $2,3 \times 10^{-}$ PFU/ml; Humanes Coronavirus MERS (Florida/USA-2_Saudi Arabia_2014) $1,05 \times 10$ PFU/m;; Humanes Coronavirus ( NL 63 ) $2,8 \times 10^{4} \mathrm{PFU} / \mathrm{ml}$; Humanes Coronavirus (HKUI) ( N
protein) $45 \mu \mathrm{~g} / \mathrm{ml}$; Adenovirus Typ 01 (Spezies C) $8,34 \times 10^{4} \mathrm{PFU} / \mathrm{ml}$; Adenovirus Typ 02 (Spezies C) $1,05 \times 10^{5} \mathrm{PFU} / \mathrm{ml}$; Adenovirus Typ 11 (Spezies B) $1,02 \times 10^{7} \mathrm{PFU} / \mathrm{ml}$; Enterovirus Typ 68 ( 2014 Isolate) $1,05 \times 10^{5} \mathrm{PFU} / \mathrm{ml}$; Humanes Metapneumovirus $\left(16 \mathrm{Typ}\right.$ A1) $3,80 \times 10^{-1}$ PFU/ml; Humanes Metapneumovirus (3 Typ B1 Stamm Peru 2_2002) $1,41 \times 10^{4} \mathrm{PFU} / \mathrm{ml}$ Parainfluenza Virus (Typ 1) $1,26 \times 10^{5} \mathrm{PFU} / \mathrm{ml}$; Parainfluenza Virus (Typ 2) $1,26 \times 10^{5} \mathrm{PFU} / \mathrm{ml}$; Parainfluenza Virus (Typ 3 ) $3,39 \times 10^{6} \mathrm{PFU} / \mathrm{ml}$; Parainfluenza Virus (Typ 4B) $3,80 \times 10^{5} \mathrm{PFU} / \mathrm{m}$; Rhinovirus (Typ IA) $1,05 \times 10{ }^{\circ} \mathrm{PFU}$ ml; Influenza Yyp A, $\mathrm{H} 3 \mathrm{~N} 2(\mathrm{HK} / 8 / 68) 1,51 \times 10^{4} \mathrm{PFU} / \mathrm{ml}$ Influenza Typ A, H1N1 (Brisbane $/ 59 / 07$ ) $4,57 \times 10^{5} \mathrm{PFU} / \mathrm{ml} ;$ Influenza Typ A, H1N1pdm
(Canada/6294/09)
$1,26 \times 10^{5}$ PFU $/ \mathrm{ml}$; Influenza Typ B (Texas $/ 6 / 11$ ) $2,26 \times 10^{5}$ PFU/ml; Influenza Typ B (Alabama/2/17) 3,16×10 ${ }^{5}$ PFU/ml; Staphylococus aureus (Protein A) DSM 21705 (E. Domann) $3,62 \times 10^{9} \mathrm{CFU} / \mathrm{ml}$; Staphylococus aureus (Protein A) DSM 21979 (E Domann, Univ.) $7,64 \times 10^{\circ} \mathrm{CFU} / \mathrm{ml}$; Staphylococus aureus (Protein A) DSM 46320 (E. Domann) $4,58 \times 10^{9} \mathrm{CFU} / \mathrm{ml}$; Staphylococcus epidermidis DSM 1798 (PCI 1200) $4,90 \times 10^{9} \mathrm{CFU} / \mathrm{ml}$; Staphylococcus epidermidis DSM 20044 (Fussel) $5,10 \times 10^{9} \mathrm{CFU} / \mathrm{ml}$; Bordetella pertussis $2,02 \times 10^{9} \mathrm{CFU} / \mathrm{ml}$. Bordetella pertussis DSM $55718,07 \times 10^{9} \mathrm{CFU} / \mathrm{ml}$; $2,02 \times 10^{9} \mathrm{CFU} / \mathrm{ml}$; Bordetella pertussis DSM $55718,07 \times 10^{9} \mathrm{CFU} / \mathrm{ml}$; Legionalle
pneumophila DSM 7513 (Philadelphia-1) $4,50 \times 10^{9} \mathrm{CFU} / \mathrm{ml}$; Legionalle pneumophila DSM 7514 (Los Angeles-1) $1,17 \times 10^{10} \mathrm{CFU} / \mathrm{ml}$; Streptococcus pyogenes DSM $20565(\mathrm{SF} 130$ T1) $1514 \times 10^{8}$ Ang $/ \mathrm{ml}$; Streptococcus pyogenes DSM 2071 (S. Koshimura, Sv) $9,30 \times 10^{7} \mathrm{CFU} / \mathrm{ml}$ Haemophilus influenzae DSM 24049 (TD-4) $7,77 \times 10^{8} \mathrm{CFU} / \mathrm{ml}$; Haemophilus influenza DSM 4690 (Maryland) $1,41 \times 10^{7} \mathrm{CFU} / \mathrm{ml}$; Haemophilus influenzae DSM 23393 (Pittman 576 ) $1,23 \times 10^{8} \mathrm{CFU} / \mathrm{ml}$; Mycobacterium tuberculosis DSM 43990 (BCGT, tice) $4,69 \times 10^{8} \mathrm{CFU} / \mathrm{ml}$; Sreptococcus pneumoniae (Protein G) DSM 20566 (SV1) $4,05 \times 10^{8} \mathrm{CFU} / \mathrm{ml}$; Streptococcu pneumoniae (Protein G) DSM 11967 (Jorgensen262) $3,80 \times 10^{7} \mathrm{CFU} / \mathrm{ml}$; Streptococcu
pneumoniae (Protein G) DSM 25971 (Gyeonggi) $270 \times 10^{8} \mathrm{CFU} / \mathrm{ml}$ Myconlasma preumonia
 B7) $>10^{5}$ Zelle/ml. Candida albicans DSM 1386 (NIH 3147) $653 \times 10^{8} \mathrm{CFU} / \mathrm{ml}$; Candid albicans DSM 1665 (132) $2,39 \times 10^{8} \mathrm{CFU} / \mathrm{ml}$; Candida albicans DSM 5817 ( 806 M ) $2,55 \times 10$ $\mathrm{CFU} / \mathrm{ml}$; Pseudomonas aeruginosa DSM 1117 (Boston 41501) $1,31 \times 10^{9} \mathrm{CFU} / \mathrm{ml}$ Pseudomonas aeruginosa DSM 3227 (Schutze) $3,93 \times 10^{9} \mathrm{CFU} / \mathrm{ml}$; Streptococcus salivarius
DSM $20560(275) 5,44 \times 10^{8} \mathrm{CFU} / \mathrm{ml}$; Streptococcus salivarius DSM $20067(21367) 5,09 \times 10^{8}$ DSM 20560 (275) $5,44 \times 10^{8} \mathrm{CF} / 2 \mathrm{ml}$; Streptococcus salivarius DSM 20067 (21367) $5,09 \times 10$

 Neue Coronavirus-Variante-Stamm B 1.1529 (omicron) ( $3,1 \times 10^{6} \mathrm{TCID}_{50} / \mathrm{ml}$ ) 5. Interferenz

Für die unten aufgelisteten Substanzen wurde bestätigt, dass sie keine Interferenzreaktion mit dem SARS-CoV-2, Influenza A/B und RSV-Antigen-Test haben:
Für die unten aufgelisteten Sus in dem SARS-CoV-2, Influenza A/B und RSV-Antigen Kombi-Testkit haben. Benzocain
(150mg/dl), Blut (menschlich) $(5 \%)$, Mucin( $5 \mathrm{mg} / \mathrm{ml}$ ), Naso GEL (NeilMed) ( $5 \%$ ), CVS Nasentropfen (Phenylephrin) ( $05 \%$ ) Mrin (Oxymetzasolin) ( $0.05 \%$ ) CVS $(5 \%$ ), CV (Cromolyn) ( $15 \%$ ), Zicam Erkaltungsmittel ( $5 \%$ ), Homöopathisch (Alkalol) ( $1.0 \%$ ), Halsschmerzen Phenol Spray ( $1.5 \%$ ), Tobramycin( $3,3 \mathrm{mg} / \mathrm{dl)}$ ), Mupirocin( $(0,15 \mathrm{mg} / \mathrm{d})$ ),
Fluticasone ( $0,000126 \mathrm{mg} / \mathrm{dl}$ ) Tamiflu (Oseltamivir Phosphat) $(500 \mathrm{mg} / \mathrm{dl})$ Budenoside Fluticasone ( $0,000126 \mathrm{mg} / \mathrm{dl}$ ),Tamiflu (Oseltamivir Phosphat) ( $500 \mathrm{mg} / \mathrm{dl}$ ), Budenoside $(0,00063 \mathrm{mg} / \mathrm{dl})$, Biotin $(0,35 \mathrm{mg} / \mathrm{dl})$, Methanol $(150 \mathrm{mg} / \mathrm{dl})$, Acetylsalicylsäure $(3 \mathrm{mg} / \mathrm{dl})$,
Diphenhydramin $(0,0774 \mathrm{mg} / \mathrm{dl}), \quad$ Dextromethorphan $(0,00156 \mathrm{mg} / \mathrm{dl})$, Dexamethason $\underset{(1,2 \mathrm{mg} / \mathrm{dl}) \text {, Mucinex }(5 \%) \text {. }}{\substack{\text { Diphenhy } \\(0,0774 \\(1)}}$

## (1,2mg/ 6.Hook

Wenn die Konzentration der Virusstämme in der Probe nicht höher als in der folgenden Tabell SARS-CoV-2 und Influenza A/B und RSV Ant | Virenstäme | Grenzwert |
| :--- | :--- |

| Virenstamme | Grenzwert |
| :--- | :--- |
| SARS-CoV-2 | $1,8 \times 10^{5} \mathrm{TCID}_{50} / \mathrm{ml}$ |
| 2009 H 1 N 1 | $9,8 \times 10^{6} \mathrm{TCID}_{50} / \mathrm{ml}$ |
| Saisonales H1N1 | $1,3 \times 10^{7} \mathrm{TCID}_{50} / \mathrm{ml}$ |
| Typ A H3N2 | $2,1 \times 10^{8} \mathrm{TCID}_{50} / \mathrm{ml}$ |
| B/Victoria | $1 \times 10^{6} \mathrm{TCID}_{50} / \mathrm{ml}$ |
| B/Yamagata | $1 \times 10^{6} \mathrm{TCID}_{50} / \mathrm{ml}$ |
| RSV Typ A | $4,6 \times 10^{8} \mathrm{TCID}_{50} / \mathrm{ml}$ |
| RSV Typ B | $3,2 \times 10^{7} \mathrm{TCID}_{50} / \mathrm{ml}$ |

7. Klinische Genauigkeit
7.1. Ergebnisse und Analyse von SARS-CoV-2:

| Methode |  | RT-PCR |  | Gesamte Ergebnis |
| :--- | :--- | ---: | ---: | :---: |
| SARS-CoV-2 und <br> Influenza A/B und <br> RSV Antigen-Kombi- <br> Testkit | Ergebnisse | Positiv | Negativ |  |
|  | Positiv | 342 | 0 | 342 |
| Gesamte Ergebnisse |  |  |  |  |
|  | Negativ | 26 | 450 | 476 |


| Zyklusschwellenwert (CT) | $\begin{gathered} \text { \# der RT- } \\ \text { PCR } \\ \text { positiv } \end{gathered}$ | fluorecare ${ }^{\circledR}$ SARS-CoV-2 und Influenza A/B und RSV Antigen Kombi-Testkit (Kolloidales Gold Chromatographischer Immunoassay) |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | \# der positiven | PPA | NPA |
| $<25$ | 105 | 104 | 99,05\% | 100\% |
| $<30$ | 217 | 214 | 98,62\% |  |
| <35 | 297 | 292 | 98,32\% |  |
| <38 | 368 | 342 | 92,93\% |  |



| Methode |  | RT-PCR |  | $\begin{aligned} & \text { Gesamte } \\ & \text { Ergebnisse } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: |
| durch Laien | Ergebnisse | Positiv | Negativ |  |
|  | Positiv | 30 | 0 | 30 |
|  | Negativ | 2 | 87 | 89 |
| Gesamte Ergebnisse |  | 32 | 87 | 119 |
| 7.2 Ergebnisse und Analyse von Influenza A : |  |  |  |  |
| Methode |  | Referenzprodukt |  |  |
| SARS-CoV-2 und Influenza $\mathrm{A} / \mathrm{B}$ und RSV Antigen-Kombi-Testkit | Ergebnisse | Positiv | Negativ | Ergebnisse |
|  | Positiv | 104 | 0 | 104 |
|  | Negativ | 9 | 555 | 564 |
| Gesamte Ergebnisse |  | 113 | 555 | 668 |


| Methode |  | Referenzprodukt Professioneller Test |  | Gesamte Ergebnisse |
| :---: | :---: | :---: | :---: | :---: |
| Selbstest | Ergebnisse | Positiv | Negativ |  |
|  | Positiv | 17 | 0 | 17 |
|  | Negativ | 0 | 102 | 102 |
| Gesamte Ergebnisse |  | 17 | 102 | 119 |
| 7.3 Ergebnisse und Analyse von Influenza B: |  |  |  |  |
| Methode |  | Referenzprodukt |  | Gesamte Ergebniss |
| SARS-CoV-2 und Influenza $A / B$ und RSV Antigen-Kombi- Testkit | Ergebnisse | Positiv | Negativ |  |
|  | Positiv | 80 | 0 | 80 |
|  | Negativ | 8 | 580 | 588 |
| Gesamte Ergebnisse |  | 88 | 580 | 668 |


| Methode |  | $\begin{gathered} \text { Referenzprodukt } \\ \text { Professioneller Test } \end{gathered}$ |  | Gesamte Ergebnisse |
| :---: | :---: | :---: | :---: | :---: |
| Selbstest | Ergebnisse | Positiv | Negativ |  |
|  | Positiv | 11 | 0 | 11 |
|  | Negativ | 1 | 107 | 108 |
| Gesamte Ergebnisse |  | 12 | 107 | 119 |


| Methode |  | Referenzprodukt |  | Gesamte Ergebnisse |
| :---: | :---: | :---: | :---: | :---: |
| SARS-CoV-2 und Influenza $A B$ und RSV Antigen-Kombi-Testkit | Ergebnisse | Positiv | Negativ |  |
|  | Positiv | 63 | 0 | 63 |
|  | Negativ | 3 | 602 | 605 |
| Gesamte Ergebnisse |  | 66 | 602 | 668 |


| Methode |  | Referenzprodukt Professioneller Test |  | Gesamte Ergebniss |
| :---: | :---: | :---: | :---: | :---: |
| Selbsttest | Ergebnisse | Positiv | Negativ |  |
|  | Positiv | 31 | 0 | 31 |
|  | Negativ | 1 | 87 | 88 |
| Gesamte Ergebnisse |  | 32 | 87 | 119 |

.etestet und wurde 10 Mals wiederholt. Die positive Rate der Übereinstimmung ist $100 \%$. Das fluorecare® 10 SARS-CoV-2 und Influenza A/B und RSV Antigen Kombi-Testkit kann Sal

## nfluenza A/B und RSV Antigen Kombi-Testkit. WARNUNG UND VORSICHTSMASSNAHME

enden. ungenaues Ergebnis bekommen.
2. Das Kit ist nur für die In-vitro-Diagnose geeignet; Sie können es nicht wiederholt erwenden. Verschlucken Sie es nicht.
. Vermeiden Sie, dass die Pufferlösung die Augen oder die Haut berührt.
Außerhalb der Reichweite von Kindern aufbewahren.
immt verwenden Sie keine Teile des Testkits wieder
Verwenden Sie dieses Testkit nicht mehr nach dem auf der äußeren Verpackung 7. Berühren Sie nicht den Reartionsbereich der Testikassette
. Verwenden Sie das Kit nicht, wenn der Beutel beschädigt oder nicht gut versiegelt ist.
ENTSORGUNG: Alle Proben und das benutze Kit sind in 9. ENTSORGUNG: Alle Proben und das benutzte Kit sind infektiös. Die Entsorgung von Diagnosekits muss gemäß den örtlichen, staatlichen und Gesetzen/Vorschrinten zur Entsorgung von infektiosen Stoffon efflgen, Detektionsbereich scheint unabhängig von der Farbtiefe der Farbbanden , und eine Linie im die Ergebnisse positiv sind.

1. Bitte stellen Sie sicher, dass eine angemessene Probenmenge für den Test verwendet wird. Eine zu große oder zu kleine Probenmenge führt zu einer Abweichung des Ergebnisses. nach 20 Minuten ab
icht austauschbar sein, um falsche Ergebnisse
INTERPRETATION VON IKONEN

| Q | Verwenden Sie es nicht <br> wieder |  | Temperaturgrenze |
| :--- | :--- | :--- | :--- |

## ALLGEMEINE INFORMATIONEN

Rm. 405, 406, Zone B /4F, Rm. 205, 206-1, 207, West Side of Zone B/ 2F, Haowei Building, No. 8 Langshan 2nd Road, Songpingshan, Songpingshan Postleitzahl: 518055
ebsite: www.microprofit-bio.con

\section*{| EC | REP |
| :--- | :--- | :--- | <br> $\underset{\text { C/ Horacio Lengo n18.C.P } 29006 \cdot \text { Malaga-Spain }}{\text { CMC }}$}

File Nr.: MKLSW-04UM-360
Version: V1.1
Datum der Uberarbeitung: Oktober, 2022

